

Operational Modeling at EMC: Path Forward

Vijay Tallapragada

The Environmental Modeling Center NOAA / NWS / NCEP

Focus areas: Global Modeling & NGGPS

With inputs from: Hendrik Tolman, Senior Advisor for Advanced Modeling Systems, NWS/STI

Outline

The present production suite

- Too complicated
- Too much
- More is requested!

Basic issues, UMAC findings and interpretation

Basic approach: Unified Modeling Efforts Supported by NGGPS

- Atmosphere
- Coupling
- Data Assimilation

Production suite ca. March 2016

Emerging requirements

- Weather Ready Nation.
 - Products.
 - Social science.
- High impact events.
- Weather to climate—seamless suite of guidance and products.
 - ➤ Week 3-4.
 - Systematic reforecast need.
 - Forecast uncertainty.
 - Calibration of outlook products.
- Range of products beyond weather:
 - > Land, ice, ocean, waves, aerosols, (ecosystems, space weather).
 - ➤ Water cycle, National Water Center (NWC).

UMAC main recommendations

- Reduce the complexity of the NCEP Production Suite.
- The NOAA environmental modeling community requires a rational, evidence-driven approach towards decision-making and modeling system development.
- A unified, collaborative strategy for model development across NOAA is needed.
- Essential to effective planning and execution is the creation of a Chief Scientist position for Numerical Environmental and Weather Prediction (NEWP). NOAA needs to better leverage the capabilities of the external community
- NOAA must continue to enhance High Performance Computing (HPC) capabilities
- NOAA must develop a comprehensive and detailed vision document and strategic plan that maps out future development of national environmental prediction capabilities.
- Execute strategic and implementation plans based on stakeholder requirements.
 https://www.earthsystemcog.org/projects/umac_model_advisory

Basic issues / UMAC

Moving away from implementing solutions:

- Need better NWS requirements process
- Map requirements to products (not models)
- Target model development to better serve requirements
 - Community involvement from start
- Business case is integral part of decisions:
 - Unified model with concentrated effort, versus
 - models tailored to selected requirements

Additional considerations

- Coupled modeling needs to be considered in this context
- Focus on predictability and outlook products requires systematic ensemble / reanalysis (retrospective) / reforecast approach
- Data assimilation

Basic approach : atmosphere

Start with weather side:

We are NWS !

Starting with products:

- What forecast time ranges
- which reasonably imply
 - ➤ Run cadences
 - > Update cycle.
- Not so clear:
 - ➤ Resolutions
 - Data Assimilation
 - Reforecast / reanalysis / retrospectives
 - Need to map requirements to forecast ranges

Tentatively vetted at the Dec. 2015 NCEP Production Suite Review

NGGPS Annual Meeting, 08/04/2016

Possible Approach								
Range	Target	Cadence	Means					
year	Seasonal	?	9-15mo					
month	S2S	6-24h	35-45d					
week	Actionable weather	6h	3-16d					
day	Convection resolving	1h	18-36h					
hour	Warn On Forecast *	5-15 '	3-6h					
now	Analyses **	?	now					

* FACETs

* Separating from DA for models

7/29

Basic approach : coupling

This is not just a science problem

- Requirements for additional, traditionally downstream products
- "One-way" model coupling versus downstream model:
 - Increases forcing resolution of downstream models while reducing I/O needed to force models
 - Creates a better integrated test environment for holistic evaluation of model upgrades
 - Less implementations
 - Creates environment for investigating benefits of two-way coupling. Enables two-way coupling if science proves benefit

Negative aspects of coupling:

- More complex implementations
- Less flexibility to tailor products
- Produce "too much" compared to tailored products (forecast range)

Basic approach : coupling

Many potentially coupled model components already have products in the production suite :

- Where no products exists, science suggests benefit of coupling
- For the hourly forecast range, all still TBD
- DA is also moving (internationally) to coupling
- Space weather making its way into operations
- Ecosystems (marine) being considered (not in table)

Subsystem	Year	Month	Week	Day	Hour
Land / hydro	Y	Y	Y	S	?
Ocean / coast	Y	Y	Y	S/R	?
Ice	Y	Y	S	?	?
Waves	S	Y	Y	Y	?
Aerosols	S	S	Y	Y	?
Space weather	?	?	Y	?	?

Basic approach : DA

Unifying on GSI based hybrid 4D-EnVAR. Global focus:

- Is a single DA system for all global model applications feasible?
 - Freeze or update DA for ensembles and climate applications
- Where do we go with coupled DA?
- Issues:
 - Scaling of GSI
 - Resolution of underlying ensemble
- JEDI:
 - Unifying infrastructure for all DA applications
 - Community engagement & support

Modeling systems

Again starting with atmosphere

Mapping existing elements of NPS to forecast ranges

Address coupling

- For each additional model suite element map present products to the six forecast ranges
 - Including space weather
 - Excluding marine ecosystems for now

Data assimilation

Table with DA for forecast ranges and components

Models: atmosphere

Range	Year	Month	Week	Day	Hour	Now
Target	Seasonal outlook	S2S outlook	Actionable weather	Convection resolving	Warn On Forecast	Analyses / nowcast
Present models	CFS	CFS (GEFS extension)	GFS, GEFS, NAM, SREF, RAP, hurricane	HRRR, NAM nest, HiresW		RTMA, URMA, blend
Cadence	? (is 6h)	24h (is 6h)	6h	1h	5-15'	?
Range	9-15mo 35-45d global global		3-16d global (?)	18-36h regional (?)	3-6h ? regional	0 regional (?)
Updates	4y	2у	1y	1y	1y	6 mo
Reanal.	1979-now	20-25y	Зу	?	?	
Where	?	WCOSS	WCOSS	WCOSS	?	WCOSS

- Ensemble based DA for all ranges (day and hour TBD), except possibly for the now range
- All global applications from single unified modeling system.
- Global / regional unification ?

- Present NPS elements not fitting in this layout:
 - Space weather (WAM-IPE / Geospace).
 - Hurricane models (GFDL / HWRF).

black: existing

red: studies suggest benefit

Models: ocean

	Range	Year	Month	Week	Day	Hour	Now
	Present models	CFS		RTOFS, ESTOFS, PSURGE, 			RTGSST, +4
	Unmet req.		MOM/HYCOM		TE		
	Atmos.	dynamic					
for		uynamic	dynamic co	oupling (SST,	TBD		
put	Land / H.	in	undation (fres	h-salt couplin	g)		
g in	lce	dynamic	dyna	amic	TBD		
llir	Waves	mome	ntum exchange, water level (depth), inundation				
COL	Aerosols						
	Space W.						

- DA: unify GODAS, NCODA, GSI?
- Coastal processes:
 - 2D for inundation focus
 - 3D for water quality focus

- Present models not fitting in ranges:
 - Tsunami
 - Other regional subdivision than CONUS
 - Mix of 2D and 3D approaches at same ranges

NGGPS Annual Meeting, 08/04/2016

black: existing

red: studies suggest benefit

Models: ice

	Range	Year	Month	Week	Day	Hour	Now
	Present models	CFS	GEFS, ice drift	RTOFS-G			ice conc.
	Unmet req.				TBD		new pars.
	Atmos.						
ut fo	Land / H.						
inpu	Ocean						
ling	Waves						
dno	Aerosols						
	Space W.						

• Ice is static input in waves,

• Present models not fitting in ranges:

– none

NGGPS Annual Meeting, 08/04/2016

Models: waves

black: existing

red: in prep / suggested benefits

	Range	Year	Month	Week	Day	Hour	Now		
	Present models		GWES	multi_1, multi_2, GLW			RTMA		
	Unmet req.	TBD		(rip current)	TBD (rip current)	TBD	new pars		
л	Land / H.		coastal inundation						
nput fo	Ocean	surface fluxes, momentum exchange, Stokes drift, Langmuir mixing, bottom friction, turbidity (sediment agitation)							
ing i	lce								
ldnc	Aerosols sea spray								
ö	Space W.		no direct linkage						

- DA: presently not used, moving to ensemble based GSI
- Wave models generally have a shorter forecast horizon than the atmospheric models driving them (coupling will result in longer runs)
- Present models not fitting in ranges:
 - Multi_2 (HWRF driven).
 - NDFD driven GLWN.
 - NWPS (on demand).

Data Assimilation

black: existing

red: studies suggest benefit

component	Year	Month	Week	Day	Hour	Now
Atmos.	GSI	GSI	Hybrid GSI	Hybrid GSI	Hybrid GSI	GSI
Land / H.						
Ocean	GODAS	GODAS	NCODA			
Ice						
Waves			GSI	GSI		
Aerosols						
Space W.						

 $(\underline{\check{e}})$

Where to go from here

A look forward and compute resources estimates are discussed in a separate whitepaper, starting from the table with forecast ranges in Part I. Guiding principles (repeat):

- Five key forecast ranges
- All probabilistic,
 - Away from high resolution deterministic supported by low resolution ensemble,
 - but that still may be needed in transition
- Coupled.

For each NPS element, the next slides consider

- a. Tentative layout
- b. Present status
- **C.** Key science questions
- d. Implementation issues

Year:

Tentative layout:

 50km resolution, 9-15 month forecasts, full ensemble, updating weekly. Assuming DA mostly from hourly range, coupled

Present status:

Corresponds to present CFS, but will only include longest runs

Key science questions

- Predictability; what to focus on for products
- Advanced coupling
- Physics suitable for severe weather outlook

Implementation issues:

 Dropping 45 day runs of present CFS requires "month" solution to be in place, otherwise "trivial".

Month:

Tentative layout:

- Extend present weather scale ensembles out to week 3-4.
- 35km resolution (constant for forecast), coupling (ocean, ice, ?), increased ensemble size, DA from week range ?

Present status:

- Extend range of GEFS without stepping down resolution
- Could be uncoupled baseline IOC, but coupling preferred

Key science questions:

- Predictability, target products
- Need / payback for coupling
- Physics improvements (severe weather outlook)

Implementation issues:

Slot can be filled by natural extension of GEFS

Week:

Tentative layout:

- High-Resolution Global Deterministic Medium Range Forecast system (10-day forecast with hourly output & 6h cadence)
- Focal point for global DA.
- At least 1-way coupling for other component products
- Global 10-13km resolution full ensemble (21-26 members?), 5-7 day forecast at 6h cadence.

Present status:

- GFS, GEFS, NAM, SREF, RAP, hurricane all have element to be merged in this (single) product
- Wave, ocean, ice, aerosol all have "downstream" products in this range

20 / 29 (

Week (cont'ed):

Key science questions:

- Develop suitable single-core ensembles at this scale
- Develop scale aware and stochastic "unified" physics
- DA development, in general,
 - higher cadence for DA to support full suite?
- How and where to merge space weather and hurricanes
- Move this eventually into "grey zone" resolutions?

Implementation issues:

- Consolidating of models in a single set of products will be tricky
 - Products for users (availability, quality)
 - Transition downstream dependencies (regional models)
 - Develop incremental plan
- Larger relative resources needed compared to longer forecast ranges (due to regional → global ensembles)

21 / 29 (

Unified design (high level goal)

NGGPS Annual Meeting, 08/04/2016

NCEP

22 / 29 🚫 🤇

NGGPS

(Next Generation Global Prediction System)

NWS R2O funding and NGGPS projects.

- NWS as a funding agency.
 - Fund gaps in operations.
 - Project based funding for strategic development.
 - Within US government.
 - Academia, with NWS partners / champions.
 - ➤ Test beds for R2O.
- Key element: Next Generation Global Prediction System.
 - ➤ GFDL FV3 as the Next generation Dycore.
 - Unified physics interface, focus on physics.
 - > 11 more NGGPS teams
 - Model Coupling
 - Started with Climate Forecast System

Unified System using NEMS/ESMF

Modular modeling, using ESMF to modularize elements in fully coupled unified global model (+ NWM, ionosphere, ecosystems,)

24 / 29 🧃

NGGPS physics

NGGPS Annual Meeting, 08/04/2016

Implementation Plan of FV3 in NEMS GFS

	FY1	7			F Y 1 8	FY18			FY19		
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
St separate FV	udy FV3 structu 3 dycore from µ	ire parent model									
		Implement F	V3 dynami	c core in NEMS®							
		Couple F for	/3 to GFS p ecast-only	hysics (NUOPC pl experiments, tuni	hysics driver) ng and testing ⁸	perform %					
			D (native g	evelop DA technic Irid vs physics gri	ues [%] id; New data)						
			experiments, l tional efficienc	oenchmarkir y &optimiza	ig tion						
					Preproces &do	sing and po wnstream d	st-processir ependence	ng, up			
					Test a	nd Impleme	nt NGGPS V	erification	tools		
@ The targe ~10km g & New phy	 @ The targeted GFS resolution is T_L2046L28 or T_q1534L128, on ~10km grid and extends up to 80 km. & New physics: Chicira-Sugiyama convection with scale-aware 					3-year re time pa Comm	trospective trallels, EM unity Evalu	+ real- C and ation			
Arakawa Turbuler scheme % T _L 678L1	 New physics: Chicira-Sugiyama convection with scale-aware Arakawa-Wu extension, Simplified Higher Order Closure Turbulence, Double-moment cloud and aerosol-aware microphysics scheme, Unified convective and orographic gravity wave drag etc T_L678L128 4D-EnVAR data assimilation 							Code de NCO Par operatio	livery, allel & n		

NGGPS Annual Meeting, 08/04/2016

26 / 29 🚫 🖤

Next Steps

- Integrate Aerosol and Atmospheric Composition Module (NGAC) for FV3 based GFS in NEMS
 - Aerosol DA requirements
- Implement FV3 dynamic core for GEFS in NEMS
 - Reanalysis/Reforecast requirements
 - Coupled System
 - Coupled DA
- Implement FV3 dynamic core for CFS in NEMS
 - Fully coupled system with strongly coupled DA
 - Reanalysis/Reforecast requirements
- Design and development of high-resolution generalized nesting capabilities in NEMS
 - Movable, two-way interactive
 - Subsume hurricane models
- Global-Meso Unification

Guiding Principles (following UMAC recommendations)

- Reduce the complexity of the NCEP Production Suite
- Rational evidence-driven approach towards decision-making and endto-end modeling system development
- A unified, collaborative strategy for model development across NOAA
- Better leverage the capabilities of the external community
- Develop a comprehensive and detailed vision document and strategic plan that maps out future development of national environmental prediction capabilities
- Execute strategic and implementation plans based on stakeholder requirements
- Community Modeling and support (internal and external)
- Governance (internal and external)
- Project Management approach (planning for success)

Questions?

NGGPS Annual Meeting, 08/04/2016

